Methodology for conventional gait training in patients with spinal injuries. Preliminary study/Metodología para el entrenamiento de la marcha convencional en pacientes con lesiones medulares. Estudio preliminar

Main Article Content

Alexander Echemendia del Valle

Abstract

Spinal cord injury is a complex medical condition that disrupts the lives of people who suffer from it, those affected become dependent due to the multiple sequelae that accompany it, among which the loss of gait stands out, standing as one of priorities in neurorehabilitation. Most international neurorehabilitation programs do not include a defined methodology for gait recovery in spinal cord injured patients. Specialists from the International Center for Neurological Restoration created a methodology for this purpose. The objective of the study was to verify the behavior of the application of the methodology with a sample of 5 patients treated at the institution using content analysis, observation and measurement methods. The patients in the sample were evaluated before and after applying the methodology with the SCIM III, WISCI II scales. Treatment lasted 8 weeks for each patient. The results showed an increase in the functional capacity of walking in the patients, without the presence of complications. It is assumed that the use of the methodology can guarantee a functional process for gait training, in an organized manner in patients with spinal cord injuries.

Downloads

Download data is not yet available.

Article Details

How to Cite
Echemendia del Valle, A. (2021). Methodology for conventional gait training in patients with spinal injuries. Preliminary study/Metodología para el entrenamiento de la marcha convencional en pacientes con lesiones medulares. Estudio preliminar. PODIUM - Journal of Science and Technology in Physical Culture, 16(3), 757–771. Retrieved from https://podium.upr.edu.cu/index.php/podium/article/view/991
Section
ORIGINAL ARTICLES

References

Amtmann, D., Bocell, F. D., Bamer, A., Heinemann, A. W., Hoffman, J. M., Juengst, S. B., . . . McMullen, K. (2019). Psychometric Properties of the Satisfaction With Life Scale in People With Traumatic Brain, Spinal Cord, or Burn Injury: A National Institute on Disability, Independent Living, and Rehabilitation Research Model System Study. Assessment, 26(4), 695-705. doi:10.1177/1073191117693921

Andrade, V. S., Faleiros, F., Balestrero, L. M., Romeiro, V., & Santos, C. B. D. (2019). Social participation and personal autonomy of individuals with spinal cord injury. Rev Bras Enferm, 72(1), 241-247. doi:10.1590/0034-7167-2018-0020

Babaloo, H., Ebrahimi-Barough, S., Derakhshan, M. A., Yazdankhah, M., Lotfibakhshaiesh, N., Soleimani, M., . . . Ai, J. (2019). PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol, 234(7), 11060-11069. doi:10.1002/jcp.27936

Barclay, L., Lentin, P., Bourke-Taylor, H., & McDonald, R. (2019). The experiences of social and community participation of people with non-traumatic spinal cord injury. Aust Occup Ther J, 66(1), 61-67. doi:10.1111/1440-1630.12522

Calhoun Thielen, C., Sadowsky, C., Vogel, L. C., Taylor, H., Davidson, L., Bultman, J., . . . Mulcahey, M. J. (2017). Evaluation of the Walking Index for Spinal Cord Injury II (WISCI-II) in children with Spinal Cord Injury (SCI). Spinal Cord, 55(5), 478-482. doi:10.1038/sc.2016.142

Chasman, D., Iyer, N., Fotuhi Siahpirani, A., Estevez Silva, M., Lippmann, E., McIntosh, B., . . . Roy, S. (2019). Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Syst, 9(2), 167-186 e112. doi:10.1016/j.cels.2019.05.012

Chisholm, A. E., Qaiser, T., Williams, A. M. M., Eginyan, G., & Lam, T. (2019). Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury. J Neurophysiol, 121(3), 1078-1084. doi:10.1152/jn.00432.2018

Declaración de Helsinki de la Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres humanos. Edimburgo, Escocia.: 52 Asamblea General 2000. http://www.csjn.gov.ar/cmf/hel.html

Ditunno, J. F., Jr., Ditunno, P. L., Scivoletto, G., Patrick, M., Dijkers, M., Barbeau, H., . . . Schmidt-Read, M. (2013). The Walking Index for Spinal Cord Injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord, 51(5), 346-355. doi:10.1038/sc.2013.9

Gaspar, R., Padula, N., Freitas, T. B., de Oliveira, J. P. J., & Torriani-Pasin, C. (2019). Physical Exercise for Individuals With Spinal Cord Injury: Systematic Review Based on the International Classification of Functioning, Disability, and Health. J Sport Rehabil, 28(5), 505-516. doi:10.1123/jsr.2017-0185

Hicks, A. L. (2020). Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord. doi:10.1038/s41393-020-0502-y

Hidalgo, A. (2017). La rehabilitación terapéutica a pacientes parapléjicos: Impacto desde las tecnologías. Podium, 12(1), 21-30.

Holanda, L. J., Silva, P. M. M., Amorim, T. C., Lacerda, M. O., Simao, C. R., & Morya, E. (2017). Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. J Neuroeng Rehabil, 14(1), 126. doi:10.1186/s12984-017-0338-7

Hutson, T. H., & Di Giovanni, S. (2019). The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol, 15(12), 732-745. doi:10.1038/s41582-019-0280-3

Mazzoleni, S., Battini, E., Rustici, A., & Stampacchia, G. (2017). An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results. IEEE Int Conf Rehabil Robot, 2017, 289-293. doi:10.1109/ICORR.2017.8009261

McDaid, D., Park, A. L., Gall, A., Purcell, M., & Bacon, M. (2019). Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom. Spinal Cord, 57(9), 778-788. doi:10.1038/s41393-019-0285-1

Mekki, M., Delgado, A. D., Fry, A., Putrino, D., & Huang, V. (2018). Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics, 15(3), 604-617. doi:10.1007/s13311-018-0642-3

Midik, M., Paker, N., Bugdayci, D., & Midik, A. C. (2020). Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil, 66(1), 54-59. doi:10.5606/tftrd.2020.3316

Miller, L. E., & Herbert, W. G. (2016). Health and economic benefits of physical activity for patients with spinal cord injury. Clinicoecon Outcomes Res, 8, 551-558. doi:10.2147/CEOR.S115103

Miller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices, 9, 455-466.

Mulcahey, M. J., Calhoun, C. L., Sinko, R., Kelly, E. H., & Vogel, L. C. (2016). The spinal cord independence measure (SCIM)-III self report for youth. Spinal Cord, 54(3), 204-212. doi:10.1038/sc.2015.103

Okawara, H., Sawada, T., Matsubayashi, K., Sugai, K., Tsuji, O., Nagoshi, N., . . . Nakamura, M. (2020). Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Spinal Cord, 58(5), 520-527. doi:10.1038/s41393-019-0403-0

Ribeiro Neto, F., Gomes Costa, R. R., Tanhoffer, R. A., Leal, J. C., Bottaro, M., & Carregaro, R. L. (2020). Muscle Strength Cutoff Points for Functional Independence and Wheelchair Ability in Men With Spinal Cord Injury. Arch Phys Med Rehabil, 101(6), 985-993. doi:10.1016/j.apmr.2020.01.010

Sandrow-Feinberg, H. R., & Houlé, J. D. J. B. r. (2015). Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. 1619, 12-21.

Sutton, B. S., Ottomanelli, L., Njoh, E., Barnett, S., & Goetz, L. (2020). Economic evaluation of a supported employment program for veterans with spinal cord injury. Disabil Rehabil, 42(10), 1423-1429. doi:10.1080/09638288.2018.1527955