Metodologia para o treinamento de marcha convencional em pacientes com lesões medulares. Estudo preliminar
##plugins.themes.bootstrap3.article.main##
Resumo
Downloads
##plugins.themes.bootstrap3.article.details##
Referências
Amtmann, D., Bocell, F. D., Bamer, A., Heinemann, A. W., Hoffman, J. M., Juengst, S. B., . . . McMullen, K. (2019). Psychometric Properties of the Satisfaction With Life Scale in People With Traumatic Brain, Spinal Cord, or Burn Injury: A National Institute on Disability, Independent Living, and Rehabilitation Research Model System Study. Assessment, 26(4), 695-705. doi:10.1177/1073191117693921
Andrade, V. S., Faleiros, F., Balestrero, L. M., Romeiro, V., & Santos, C. B. D. (2019). Social participation and personal autonomy of individuals with spinal cord injury. Rev Bras Enferm, 72(1), 241-247. doi:10.1590/0034-7167-2018-0020
Babaloo, H., Ebrahimi-Barough, S., Derakhshan, M. A., Yazdankhah, M., Lotfibakhshaiesh, N., Soleimani, M., . . . Ai, J. (2019). PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol, 234(7), 11060-11069. doi:10.1002/jcp.27936
Barclay, L., Lentin, P., Bourke-Taylor, H., & McDonald, R. (2019). The experiences of social and community participation of people with non-traumatic spinal cord injury. Aust Occup Ther J, 66(1), 61-67. doi:10.1111/1440-1630.12522
Calhoun Thielen, C., Sadowsky, C., Vogel, L. C., Taylor, H., Davidson, L., Bultman, J., . . . Mulcahey, M. J. (2017). Evaluation of the Walking Index for Spinal Cord Injury II (WISCI-II) in children with Spinal Cord Injury (SCI). Spinal Cord, 55(5), 478-482. doi:10.1038/sc.2016.142
Chasman, D., Iyer, N., Fotuhi Siahpirani, A., Estevez Silva, M., Lippmann, E., McIntosh, B., . . . Roy, S. (2019). Inferring Regulatory Programs Governing Region Specificity of Neuroepithelial Stem Cells during Early Hindbrain and Spinal Cord Development. Cell Syst, 9(2), 167-186 e112. doi:10.1016/j.cels.2019.05.012
Chisholm, A. E., Qaiser, T., Williams, A. M. M., Eginyan, G., & Lam, T. (2019). Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury. J Neurophysiol, 121(3), 1078-1084. doi:10.1152/jn.00432.2018
Declaración de Helsinki de la Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres humanos. Edimburgo, Escocia.: 52 Asamblea General 2000. http://www.csjn.gov.ar/cmf/hel.html
Ditunno, J. F., Jr., Ditunno, P. L., Scivoletto, G., Patrick, M., Dijkers, M., Barbeau, H., . . . Schmidt-Read, M. (2013). The Walking Index for Spinal Cord Injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord, 51(5), 346-355. doi:10.1038/sc.2013.9
Gaspar, R., Padula, N., Freitas, T. B., de Oliveira, J. P. J., & Torriani-Pasin, C. (2019). Physical Exercise for Individuals With Spinal Cord Injury: Systematic Review Based on the International Classification of Functioning, Disability, and Health. J Sport Rehabil, 28(5), 505-516. doi:10.1123/jsr.2017-0185
Hicks, A. L. (2020). Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord. doi:10.1038/s41393-020-0502-y
Hidalgo, A. (2017). La rehabilitación terapéutica a pacientes parapléjicos: Impacto desde las tecnologías. Podium, 12(1), 21-30.
Holanda, L. J., Silva, P. M. M., Amorim, T. C., Lacerda, M. O., Simao, C. R., & Morya, E. (2017). Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. J Neuroeng Rehabil, 14(1), 126. doi:10.1186/s12984-017-0338-7
Hutson, T. H., & Di Giovanni, S. (2019). The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol, 15(12), 732-745. doi:10.1038/s41582-019-0280-3
Mazzoleni, S., Battini, E., Rustici, A., & Stampacchia, G. (2017). An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results. IEEE Int Conf Rehabil Robot, 2017, 289-293. doi:10.1109/ICORR.2017.8009261
McDaid, D., Park, A. L., Gall, A., Purcell, M., & Bacon, M. (2019). Understanding and modelling the economic impact of spinal cord injuries in the United Kingdom. Spinal Cord, 57(9), 778-788. doi:10.1038/s41393-019-0285-1
Mekki, M., Delgado, A. D., Fry, A., Putrino, D., & Huang, V. (2018). Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics, 15(3), 604-617. doi:10.1007/s13311-018-0642-3
Midik, M., Paker, N., Bugdayci, D., & Midik, A. C. (2020). Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil, 66(1), 54-59. doi:10.5606/tftrd.2020.3316
Miller, L. E., & Herbert, W. G. (2016). Health and economic benefits of physical activity for patients with spinal cord injury. Clinicoecon Outcomes Res, 8, 551-558. doi:10.2147/CEOR.S115103
Miller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices, 9, 455-466.
Mulcahey, M. J., Calhoun, C. L., Sinko, R., Kelly, E. H., & Vogel, L. C. (2016). The spinal cord independence measure (SCIM)-III self report for youth. Spinal Cord, 54(3), 204-212. doi:10.1038/sc.2015.103
Okawara, H., Sawada, T., Matsubayashi, K., Sugai, K., Tsuji, O., Nagoshi, N., . . . Nakamura, M. (2020). Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Spinal Cord, 58(5), 520-527. doi:10.1038/s41393-019-0403-0
Ribeiro Neto, F., Gomes Costa, R. R., Tanhoffer, R. A., Leal, J. C., Bottaro, M., & Carregaro, R. L. (2020). Muscle Strength Cutoff Points for Functional Independence and Wheelchair Ability in Men With Spinal Cord Injury. Arch Phys Med Rehabil, 101(6), 985-993. doi:10.1016/j.apmr.2020.01.010
Sandrow-Feinberg, H. R., & Houlé, J. D. J. B. r. (2015). Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. 1619, 12-21.
Sutton, B. S., Ottomanelli, L., Njoh, E., Barnett, S., & Goetz, L. (2020). Economic evaluation of a supported employment program for veterans with spinal cord injury. Disabil Rehabil, 42(10), 1423-1429. doi:10.1080/09638288.2018.1527955